class: center, middle, inverse, title-slide # Exploring the complexity of ecological networks using SVD entropy ###
Tanya Strydom
1,2
Gullio V. Dalla Riva
3
& Timothée Poisot
1,2
1
Département de Sciences Biologiques, Université de Montréal;
2
Québec Centre for Biodiversity Sciences;
3
School of Mathematics and Statistics, University of Canterbury
--- # The complexity of communities .pull-left[ Quantifying the complexity and stability of communities remains a challenge. ] <span style=" margin-left:-5%; position: absolute; top: 5%"> <img src="img/community.png" width="100%" /> </span> ??? -- <span style="margin: 0; position: absolute; bottom: 30%; text-align: left; left: 7%;"> Network theory provides a <br> powerful approach <br> and allows us <br> to infer ecological properties <br> and processes </span> <span style=" margin-left:-5%; position: absolute; top: 5%"> <img src="img/Network.png" width="100%" /> </span> ??? Complexity and stability are issues that have been studied but has remained a challenge to quantify. The debate is still prevalent in ecology --- # A traditional definition of complexity Assume that a system is complex because it has many parts *i.e.* measuring structural complexity -- .pull-left[ **Nestedness** Do species assemblages form subsets of larger assemblages? ] .pull-right[ **Connectance** What proportion of potential interaction are realised? ] <span style=" margin-left:-3%; position: absolute; top: 50%"> <img src="img/structure.png" width="90%" /> </span> ??? Nestedness would look at specialists vs generalists --- # Taking a physical approach to complexity Instead we can measure the 'physical complexity' *i.e.* the amount of information required to encode the system -- <span style=" margin-left:0%; position: absolute; top: 42%"> <img src="img/Haring.jpg" height="350 px" /> </span> <span style=" margin-left:50%; position: absolute; top: 42%"> <img src="img/Basquait.png" height="350 px" /> </span> --- # Estimating complexity using SVD <span style=" margin-left:-4%; position: absolute; top: 35%"> <img src="img/SVD.png" width="97%" /> </span> --- # SVD Entropy as complexity Using the `\(\sigma\)` values from `\(\mathbf{\Sigma}\)` and following Pielou's evenness (Pielou 1975) we can ensure that `\(\sigma\)` values are less than one: $$ s_i = \sigma_i/\text{sum}(\sigma) $$ -- and estimate entropy following Shannon (1948) as: $$ J = -\frac{1}{\ln(k)}\sum_{i=1}^k s_i\cdot\ln(s_i) $$ -- High values of SVD entropy reflects that all vectors are equally important, *i.e.* we cannot efficiently compress the network, indicating high complexity ??? where k is the max rank --- # SVD Entropy as complexity <span style=" margin-left:0%; position: absolute; top: 25%"> <img src="img/SVD_vis.png" width="90%" /> </span> --- # SVD Entropy of Networks Ecological networks are *extremely* complex <span style=" margin-left:0%; position: absolute; top: 20%"> <img src="img/interactiontype_v_entropy2.png" width="93%" /> </span> --- # Network Structure Captures Network Complexity <span style=" margin-left:-5%; position: absolute; top: 30%"> <img src="img/others_v_entropy2.png" width="88%" /> </span> ??? Interstingly although we see this strong relationship its also interesting to note that while the networks span the almost the 'complete' range of possible values for connectance and nesetedness - something we don't see for entropy Arguably these measures are telling a similar story but what happens when we take a bit more of an ecological approach e.g. resilliance --- # Defining Complexity Matters <span style=" margin-left:-5%; position: absolute; top: 23%"> <img src="img/axes.png" width="95%" /> </span> -- <span style=" margin-left:-5%; position: absolute; top: 23%"> <img src="img/entropy_v_AUCall2.png" width="95%" /> </span> ??? First do the axes and then have the point appear How do we define resilience in ecological terms -> focus on how we defined resilience --- # Connecting the Dots <span style=" margin-left: -15%; position: absolute; top: 9%"> <img src="img/community.png" width="65%" /> </span> -- <span style="margin: 0; position: absolute; bottom: 65%; text-align: left; left: 34%;"> 1. Not all measures of<br> complexity are created<br> equal </span> <span style=" margin-left:30%; position: absolute; top: 37%"> <img src="img/entropy_v_AUCall2.png" width="25%" /> </span> -- <span style="margin: 0; position: absolute; bottom: 37%; text-align: left; left: 34%;"> 2. Complexity is not<br> always intuitive </span> <span style=" margin-left:30%; position: absolute; top: 66%"> <img src="img/others_v_entropy2.png" width="26%" /> </span> -- <span style=" margin-left:60%; position: absolute; top: 35%"> <img src="img/con2.png" width="70%" /> </span> <span style="margin: 0; position: absolute; bottom: 65%; text-align: center; left: 70%;"> unified<br> definition </span> -- <span style=" margin-left:68%; position: absolute; top: 60%"> <img src="img/con1.png" width="100%" /> </span> <span style="margin: 0; position: absolute; bottom: 40%; text-align: center; left: 79%;"> SVD Entropy </span> -- .footnote[ For a more complete breakdown the preprint can be found at [doi.org/fmpt](https://doi.org/fmpt) ] ???